An Urban Cellular Automata Model for Simulating Dynamic States on a Local Scale
نویسنده
چکیده
In complex systems, flexibility and adaptability to changes are crucial to the systems’ dynamic stability and evolution. Such resilience requires that the system is able to respond to disturbances by self-organizing, which implies a certain level of entropy within the system. Dynamic states (static, cyclical/periodic, complex, and chaotic) reflect this generative capacity, and correlate with the level of entropy. For planning complex cities, we need to develop methods to guide such autonomous progress in an optimal manner. A classical apparatus, cellular automaton (CA), provides such a tool. Applications of CA help us to study temporal dynamics in self-organizing urban systems. By exploring the dynamic states of the model’s dynamics resulting from different border conditions it is possible to discover favorable set(s) of rules conductive to the self-organizing dynamics and enable the system’s recovery at the time of crises. Level of entropy is a relevant measurement for evaluation of these dynamic states. The 2-D urban cellular automaton model studied here is based on the microeconomic principle that similar urban activities are attracted to each other, especially in certain self-organizing areas, and that the local dynamics of these enclaves affect the dynamics of the urban region by channeling flows of information, goods and people. The results of the modeling experiment indicate that the border conditions have a major impact on the model’s dynamics generating various dynamic states of the system. Most importantly, it seemed that the model could simulate a favorable, complex dynamic state with medium entropy level which may refer to the continuous self-organization of the system. The model provides a tool for exploring and understanding the effects of boundary conditions in the planning process as various scenarios are tested: resulting dynamics of the system can be explored with such “planning rules” prior to decisions, helping to identify planning guidelines that will support the future evolution of these areas.
منابع مشابه
Modeling Urban Sprawling of Tehran Metropolitan Area Based on PSO
The main goal of the present study was to implement a hybrid pattern of cellular automata model and particle swarm optimization algorithm based on TM and ETM+ imagery of landsat satellite from 1988 to 2010 for simulating the urban sprawling. In this study, an alternative model was implemented in two ways: the first method was based on two images (1988 and 2010) and the second one was based on t...
متن کاملSimulation and Evaluation of Urban Development Scenarios Using Integration of Cellular Automata Model and Game Theory
Urban growth is a dynamic and evolutionary spatial and social process that relates to the changes of urban spatial units and the transformation of people’s lifestyles and consequently demographic changes. Considering the urban development process as a function of land uses interactions, population structure and the strategic behavior of the agents involved in the urban development process (the ...
متن کاملUrban Growth Modeling using Integrated Cellular Automata and Gravitational Search Algorithm (Case Study: Shiraz City, Iran)
Cities are growing and encountering many changes over time due to population growth and migration. Identification and detection of these changes play important roles in urban management and sustainable development. Urban growth models are divided into two main categories: first cellular models which are further divided into experimental, dynamic, and integrated models and second vector models. ...
متن کاملDeveloping a model for simulating urban expansion based on the concept of decision risk: A case study in Babol city
Today, the study of the spatial-temporal pattern of urban physical expansion and the identification of the parameters affecting the expansion play a crucial role in urban-related decision-making and long-term planning processes. Consequently, the use of precise and efficient methods to predict the physical expansion of urban areas is of great importance. The objective of present study is to pro...
متن کاملIntegrating cellular automata Markov model to simulate future land use change of a tropical basin
Predicting land use change is an indispensable aspect in identifying the best development and management of land resources and their potential. This study used certified land-use maps of 1997, 2006, and 2015 combined with ancillary data such as road networks, water bodies and slopes, obtained from the Department of Agriculture and the Department of Surveying and Mapping in Malaysia, respectivel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 19 شماره
صفحات -
تاریخ انتشار 2017